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Abstract
A survey is presented of recent progress in studying kinetically constrained Ising
models using numerical approaches, a Fock-space formulation of the master
equation and a mode-coupling approach, respectively. To this end, numerical
results of various kinds are discussed, and also in connection with some
ideas related to the glass transition. Furthermore, kinetically facilitated Ising
models, considered as candidates for describing systems with a pronounced
cooperativity, are reformulated in a second-quantized formulation. Using this
approach, kinetic constraints can be incorporated into an analytical study. We
discuss in great detail a one-dimensional model and mean-field approaches
of several kinds; finally, we give some ideas for a mode-coupling approach
to the slow dynamics of such kinetically constrained Ising models in higher
dimensions.

1. Introduction

A central topic in statistical physics is the qualitative and quantitative understanding of long-
time phenomena in strongly interacting many-body systems, which exhibit an extreme slowing
down in the structural relaxation dynamics near a certain point, e.g. a system-specific value of
temperature, which defines a transition of the system state. Investigations of dense systems
that show no long-range-ordered state or singular behaviour of static quantities, in contrast
to the well-known critical slowing down of conventional phase transitions, are of particular
interest. Such phenomena are purely kinetic in origin and characterized by a high cooperativity
of local processes [1]. This means that the timescale for structural rearrangement increases
dramatically for decreasing temperatures. Therefore, cooperativity leads to the slowing
down of the relaxation with decreasing temperature. For a large class of dense systems
some essential properties of the slowing-down regime, e.g. a stretched-exponential decay
of autocorrelation functions and a non-Arrhenius temperature behaviour of relaxation times,
seem to be characteristic or universal features for the primary relaxation process at sufficiently
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long times. Such a scenario has often been observed for the main glass transition process in
supercooled liquids, which is usually called the α-relaxation.

Furthermore, there exists also an interesting class of non-equilibrium models, which are
related to facilitated kinetic spin systems. These models show a typical slowing down of the
structural relaxation dynamics for long times caused by an increasing cooperativity of local
spin-flip processes with decreasing temperature. Our interest in the present paper is focused
on the f -spin-facilitated kinetic Ising models [2–4], originally introduced by Fredrickson
and Andersen. These models are formulated on d-dimensional lattices. Each lattice point i is
characterized by a spin variable σi with two possible states σi = ±1. The set of all observables
σ = {σi} forms a configuration. The time evolution of the whole Ising spin system is described
by a master equation

∂P (σ, t)

∂t
=
∑
σ′

L(σ,σ′)P (σ, t) (1)

where P(σ, t) is the probability that a certain configuration σ is realized at time t and
L(σ,σ′) is the system-specific dynamical matrix. Hence, the underlying dynamics of the
f -spin-facilitated kinetic Ising models is a stochastic one, which is given by a simple Glauber
process [5], i.e. spin flips σi = +1 ↔ σi = −1 are controlled by the thermodynamic Gibbs
measure and by self-induced topological restrictions. In particular, the topological conditions
are explicitly taken into account such that an elementary flip at a given lattice point i is only
allowed if the number of the nearest-neighbour lattice points in the spin-up state (σi = +1)
is equal to or larger than a restriction number f with 0 < f < z (here z is the coordination
number of the lattice). Such a model [2–4, 6] is referred to as an f -spin-facilitated Ising
model on a d-dimensional lattice, and abbreviated as SFM[f, d]. Ising spins on different
lattice sites are normally coupled only via kinetic constraints, i.e. there are no pair interactions
between neighbouring spins. In this way, elementary single-spin-flip processes combined with
geometrical restrictions lead inevitably to cooperative rearrangements in the underlying spin
system.

2. Numerical simulations

Apart from experimental observations, numerical studies are very powerful methods for
analysing the relaxation dynamics in systems with high intrinsic cooperativity.

Starting from a configuration σi = +1, thermal equilibrium is established after a certain
relaxation time. However, this holds only provided that the restriction number f is sufficiently
small. Otherwise, the kinetic rules prevent equilibrium from being attained and only a
stationary state is achieved. On a d-dimensional square lattice, f � d has to be satisfied
in order to achieve thermal equilibrium. Therefore, the following statements are based mostly
on investigations of the SFM[d, d].

Thermal equilibrium is defined independently of the kinetic restrictions by the Hamiltonian
H

T
= −J

∑
〈ij〉

σi σj + h
∑

i

σi σi = ±1. (2)

The quantity h is always positive whereas the coupling constant is chosen to be J = 0 for
most investigations. Formally, h scales with the inverse temperature.

2.1. Non-exponential decay

The autocorrelation function C(t) and the global mobility F(t) are used for the numerical
analysis of the kinetics of the SFM[f, d] in most cases. While the autocorrelation function is
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given by (L is the lattice size)

C(t) = 1

Ld

∑
i

[〈σi(t)σi(0)〉 − 〈σi(0)〉2
]

(3)

the global mobility function F(t) is the fraction of spins which remain unflipped after a
time interval t , measured from some arbitrary initial time, has elapsed. At sufficiently low
temperatures, both functions show a characteristic non-exponential decay [7–9]. However, the
decay of C(t) seems to be faster than the decay of F(t).

The SFM[1, 1] shows a slightly modified exponential decay of C(t) for all
temperatures [10], whereas log F(t) ∼ −√

t . These relations can also be verified analytically.
The spin-autocorrelation function of the SFM[2, 2], on the other hand, shows a characteristic
behaviour which can be fitted over a large time interval by a stretched-exponential decay

C(t) ∼ exp[−(t/τ )γ ] (4)

where the exponent γ is presumably non-universal. Recent simulations [9] suggest that
the exponent is in the range γ = 0.43–0.54, with a weak dependence on temperature (or
alternatively on h) and on the coupling strength J .

The global mobility function F(t) can also be fitted using (4), but the exponent becomes
very small for low temperatures [8]. It is an open question whether γ converges to 0 or to a
finite value for T → 0.

2.2. Relaxation times

The relaxation time τ can be obtained from the fit procedure using (4). One obtains a
characteristic non-Arrhenius temperature behaviour which can be approximated, at least
over a large temperature interval, by a Vogel–Fulcher law [7, 11] or by a power law [12]
log τ ∼ T −δ . It is remarkable that the relaxation regime of facilitated kinetic Ising models and
the α-relaxation of real supercooled liquids exhibit qualitatively the same long-time behaviour.
Consequently, cooperativity due to local kinetic constraints seems to be a fundamental physical
mechanism for understanding the collective nature of the primary relaxation process in the
slowing-down scenario of dense systems. However, as demonstrated previously [10] there is
no indication of a real glass transition or a critical temperature as predicted by mode-coupling
theory [13, 14]. In particular, the relaxation time of every equilibrated SFM[f, d] diverges
only at zero temperature.

2.3. Control parameter

Any finite value of the coupling constant J generates correlations in the spatial distribution
of the spins. There is then the question of whether this distribution has an essential influence
on relaxation behaviour. We obtain the surprising result that neither J nor h influences the
kinetics of the models alone. The relevant control parameter is the number of spins in the up
and down state and therefore the magnetization M(J, h) defined by all spins. If we plot the
relaxation times as a function of this magnetization, all values collapse onto one curve.

2.4. Cooperative regions

The original definition of cooperatively rearranging regions [1] may be reasonable for the
qualitative explanation of some processes in glasses, but it is too imprecise for a well-defined
mathematical investigation of cooperative phenomena in the SFM[f, d]. Therefore, we make
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the definition that there exists in the environment of each spin σi a time- and temperature-
dependent region Ri(t, T ) containing the minimum number of other spins that must flip at
least once before σi can flip. The spins in a cooperative region Ri(t, T ) form a connected
cluster. The distribution function of the cluster sizes suggests a kinetic behaviour similar to
the so-called heterogeneous dynamics which is known from supercooled liquids [12]. The
temperature-dependent mean size of cooperative regions can also be fitted by a power law
R̄ ∼ T −β .

2.5. Modifications

The SFM[f, d] can be generalized by including additional degrees of freedom such as
vacancies [8, 15] and new kinetic rules. The dynamical rules are then modified in such a
manner that a vacant state favours the flip process. Furthermore, the vacancies are able to
perform hoppings between nearest neighbours. As a result of these modifications a new
relaxation process appears which can be identified with the Johari–Goldstein process observed
in supercooled liquids. In [15] one can find an analytical approach for this modified SFM[f, d]
based on a three-state spin model.

The SFM can be further generalized by including chemical reactions [16], kinetic growth
of an interface within the glass matrix [17] and the mixed-mobile-ion effects in glasses [18].

3. Fock-space approach

First we give a short review of the main ideas behind the Fock-space formalism, which is a
very powerful method for analysing classical many-body systems with a stochastic dynamics
given by a master equation on a lattice. The Fock-space approach is based on a quantum-like
formulation of the underlying master equation written in terms of creation and annihilation
operators. The Fock-space representation of the SFM[2, d] can be made more transparent
by interpreting the two spin orientations σi = −1 and 1 as empty and singly occupied sites
corresponding to the occupation numbers ni = 0 and 1 via σi = 2ni − 1, respectively. With
this, the SFM[2, d] can be interpreted as a lattice gas with excluded volume; i.e. changes
of the configuration n = {ni} are possible only subject to the exclusion principle. Now,
make the replacement σ → n in (1); following [19–22], the probability distribution P(n, t)

can then be related quite generally to a state vector |F(t)〉 in a Fock space according to
P(n, t) = 〈n|F(t)〉 and |F(t)〉 = ∑

n P(n, t)|n〉, respectively, where the basis vectors |n〉
are composed of second-quantized operators. Using this representation, the Master equation (1)
can be transformed to an equivalent evolution equation in a Fock space

∂t |F(t)〉 = L̂|F(t)〉. (5)

The dynamical matrix L(n,n′) in (1) is mapped onto the operator L̂ = L̂(d, d†), which
is given in a second-quantized form with d and d† being the annihilation and creation
operators, respectively. Originally, this transformation had been applied for the Bose case with
unrestricted occupation numbers [19–21]. Here, we consider the case of restricted occupation
numbers [22]. In order to preserve the restriction of the occupation number in the underlying
dynamical equations, the commutation rules of the operators d̂ and d̂† are chosen as those of
Pauli operators [22–24]:

[d̂i , d̂
†
j ] = δij (1 − 2d̂†

i d̂i ) [d̂i , d̂j ] = [d̂†
i , d̂

†
j ] = 0 d̂2

i = (d̂
†
i )

2 = 0. (6)
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In principle, as was shown firstly by Doi [19], the average of an arbitrary physical quantity
B(n) is given by the average of the corresponding operator B̂(t) = ∑

n |n〉B(n)〈n| via

〈B̂(t)〉 =
∑

n

P(n, t)B(n) = 〈s|B̂|F(t)〉 (7)

using the reference state 〈s| = ∑
n 〈n|. The normalization condition is expressed by the

relation 〈s|F(t)〉 = 1. A special feature of this Fock-space formulation is the fact that the
mean value is linear in the corresponding state vector, while in quantum mechanics it is bilinear.
In the same way, correlation functions can be expressed as

〈Â(t)B̂(t ′)〉 =
∑
n,n′

A(n)P (n, t; n′, t ′)B(n′) = 〈s|Â exp{L̂(t − t ′)}B̂|F(t ′)〉.

Furthermore, because of (5) and (7) the evolution equation for an arbitrary operator B̂(t), for
example the particle number operator, is given by [25]

∂t 〈B̂〉 = 〈s| [B̂, L̂] |F(t)〉 (8)

which can be extended immediately in order to allow one to write down the kinetic equations
for time-dependent correlation functions. To derive the last equation we have used the relation
〈s|L̂ = 0, which is necessary to guarantee the conservation of the normalization condition.
As a general result of the procedure, all the dynamical equations governed by the classical
problem are completely determined by the commutation rules of the underlying operators
and the structure of the evolution operator L̂. Therefore, this method allows investigations of
master equations for various evolution processes, e.g. aggregation, chemical reactions [26,27],
non-linear diffusion [28] as well as the spin-facilitated kinetic Ising models. The decisive
advantage of the Fock-space approach is given by a simple construction principle for each
evolution operator L̂ on the basis of creation and annihilation operators.

Thus, using the Fock-space formalism the master equation of the SFM[2, d] (with coupling
constant J = 0 and h = ε/2T ) can be expressed by the following evolution operator [29]

L̂ =
∑
i,j,k

κi|jkD̂j D̂k

[
β(d̂i − D̂i) + λ(d̂

†
i − (1 − D̂i))

]
(9)

with the particle number operator D̂i = d̂
†
i d̂i (with D̂i |n〉 = ni |n〉) and temperature-dependent

jump rates λ and β. The terms inside the square bracket in (9) represent a single-spin-flip
process at lattice site i and the product of the particle number operators D̂j D̂k represents the
local constraints. Additionally, κi|jk is a lattice function with κi|jk = 1 if j �= k and j and k

are neighbours to lattice cell i. Due to detailed balance one obtains for the jump rates [25]

β = ν−1(T ) and λ = ν−1(T ) exp(−ε/T ) (10)

where in general ν−1(T ) is an elementary temperature-dependent timescale represented by
simple activation dynamics like ν−1(T ) = k exp(−EA/T ) with the parameter k (measure
of a microscopic timescale) and the activation energy barrier EA (a useful tool for computer
simulations). Without loss of generality, we set in our calculations EA = 0. Therefore, the
microscopic timescale is simply a constant. Moreover, ε is the energy difference between the
up and down states. Using (8) with the operator L̂i = β(d̂i − D̂i) + λ(d̂

†
i − (1 − D̂i)) for free

spins [25], the evolution equation for the averaged particle number operator reads

∂t 〈D̂i〉 = −β〈D̂i〉 + λ
(
1 − 〈D̂i〉

)
(11)

and the solution of this kinetic equation shows an exponential decrease characterized by the
relaxation time τ0 = (λ+β)−1. The stationary state ∂t 〈D̂i〉 = 0 corresponds to an equilibrium
averaged occupation number n̄eq = 〈D̂j 〉 = λ/(λ + β), which is controlled by the ratio of the
energy difference ε and the temperature T . The average magnetization follows directly from
M = 2n̄eq − 1.
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4. One-dimensional model

In one dimension, only the restriction parameters f = 0, 1 and 2 need to be considered.
However, since thermal equilibrium is not attainable for f = 2 and 0 corresponds to the trivial
case of the paramagnetic gas, the remaining case f = 1 is the only physically relevant one.
Therefore, we focus exclusively on the SFM[1, 1] in this section.

4.1. Short-time limit

The time evolution of the averaged occupation number n̄i = 〈D̂j 〉 satisfies the equation

∂t 〈D̂i〉 = λ
(〈D̂i−1〉 + 〈D̂i+1〉

)− (λ + β)
[〈D̂i−1D̂i〉 + 〈D̂i+1D̂i〉

]
.

The simplest way of truncating the hierarchy is the decoupling 〈D̂i−1D̂i〉 ≈ 〈D̂i−1〉〈D̂i〉 = n̄2

which leads to the mean-field solution

n̄(t) = n̄eq

1 − (1 − n̄eq) exp {−t/(2τ0)} .

Another possibility is based on a more accurate decoupling [30]. As result of this procedure
the averaged occupation number n̄(t) satisfies an integral equation which can be solved in the
short-time regime:

n̄(t) = n̄eq + 2(1 − n̄eq) exp {−2t/τ0} I1(t/t0)

t/t0
.

Here I1(x) is the first-order modified Bessel function and t0 is a second relaxation constant
defined by t−1

0 = 4
√

λβ. An exact solution is possible for T = 0. With the aim of obtaining
this solution we use the cluster function

+m
i =

m∏
j=0

D̂i+j ≡ D̂iD̂i+1 · · · D̂i+m. (12)

Such a function gives a non-vanishing contribution only when all the m+ 1 lattice points of the
cluster are occupied, i.e. when all spins of the cluster are in the up state. Using the algebraic
properties of the Pauli operators we can derive an exact evolution equation [30] for the 〈+m

i 〉.
In particular, considering as initial condition a parallel alignment 〈+m〉(t = 0) = 1 (for all
m > 0), we get

〈+m〉(t) = exp

{
−2mt

τ0

}
exp{e−t/τ0 − 1}.

The spin-up cluster function reveals a double-exponential decay. In the initial time regime the
conventional exponential decay dominates. But the concentration of isolated up spins 〈+0〉(t)
shows a more pronounced slowing down that leads to non-ergodic behaviour, which is shown
in the limit t → ∞ by 〈+0〉(∞) = e−1. This result corresponds to the general fact that a
crossover of an ergodic SFM[f, d] to non-ergodic behaviour occurs only for T = 0.

4.2. Long-time limit

The long-time limit cannot be described accurately for T > 0. However, at very low
temperatures the SFM[1, 1] is characterized by a small concentration of single spins in the
up state. Then two neighbouring spins can exchange their orientation. Blocks of up spins of
length L � 2 are extremely rare and have only a short lifetime; they will therefore be neglected.
As discussed in detail in [10] one should distinguish three types of elementary local process:
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(i) Diffusion: a down spin next to an up spin changes its orientation with probability
λ � exp(−ε/T ) and becomes an up spin. Then, the original up spin changes its state to
a down spin. The result is an effective diffusion of a single up spin.

(ii) Creation of up spins: one of the two down spins next to the single up spin changes its state
with probability λ. Then, one of the two down spins next to the up spin block of length 2
changes its state, so a spin-up block of length 3 is created. The central up spin of this
block flips down with probability ≈1. Thus, one obtains two single up spins, separated
by one down spin.

(iii) Annihilation of up spins: a single up spin can be next to another single up spin, separated
only by one down spin. The down spin between the two up spins can then change its state
and one obtains an up spin block of length 3. Finally, the length is reduced to 2 and then
to 1.

Taking into account the three elementary processes described we are able to find the
autocorrelation function

C(t) = exp

(
−α2

1 t

2

)
+(π

√
α2t/2)√
t

. (13)

Here α1 and α2 are constant parameters, and + is the complementary error function. This
correlation function agrees very well with numerical simulations [10]. In the same manner,
we have calculated the global memory function F(t) introduced earlier, which is a measure
of the fraction of spins which remain unflipped after some time t , measured from an arbitrary
initial time. We get

F(t) � exp

(
−
√

n̄eqt

ξ0

)

with ξ0 = −1/ ln(1 − n̄eq). This analytical result is also in rather good agreement with
simulations [10].

5. Mean-field approaches

In higher dimensions the Fock-space formulation for a non-equilibrium system based on a
master equation is also applicable. However, in this case one can perform approximations of
mean-field type. The typical structure of the basic evolution operator is given by equation (9);
compare [29]. In terms of the lattice gas variable, the Hamiltonian equation (2) can be rewritten
as

H = 2
∑

i

(J z + h)D̂i − 4J
∑
〈i,j〉

D̂iD̂j .

Here z is the coordination number of the lattice.

5.1. Standard mean-field approach

In the standard mean-field approximation the complete hierarchy for the averaged occupation
number 〈D̂i(t)〉 is reduced to the following one:

∂t n̄ = n̄f [λ(1 − n̄) − βn̄] . (14)

Performing a linear stability analysis around the stationary state neq we get the relaxation time

τ

τ0
= n̄

−f
eq

2[cosh(βε0/2) − 2T 0n̄eq exp(βε0/2)/T ]
.
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Here we have introduced ε0 = 2(h+T 0(2n̄eq−1))with the characteristic temperatureT 0 = Jz.
Furthermore, τ0 stands for a microscopic timescale expressed by the inverse hopping rate ν and
the coordination number. Due to the kinetic constraints, the relaxation time of the SFM[f, d]
is defined by the relaxation time of the conventional kinetic Ising model without restrictions
scaled with the factor n̄−f

eq . When the interaction parameter J is zero, the relaxation time shows
different behaviours for low and high temperatures:

ln

(
τ

τ0

)
�




(f − 1) ln 2 +
f h

2T
for h/T � 1

(2f − 1)h

2T
for h/T � 1.

(15)

Asymptotically there appear two Arrhenius trajectories. However, the low-temperature branch
exhibits a slowing down compared to the high-temperature region, as shown by a smaller
slope. The crossover of the two curves is roughly estimated to be h/T = 2 ln 2. In general,
the relaxation process is a non-Arrhenius process.

The inclusion of mutual interaction between regions of different mobility leads, within
the mean-field approximation, to a temperature- and state-dependent activation energy ε =
2(h + T 0(2〈n〉 − 1)). The characteristic temperature T 0 = Jz does not signal a second-
order phase transition because the activation energy has to be a non-zero parameter. In the
low-temperature limit T → 0 the relaxation time tends to infinity:

τ

τ0
� exp

(
(z − 1)

h̃0

2T

)

with

h̃0 = 2

{
h + T 0

[
1 − 2 exp

(
−2

h

T
− 2

T 0

T

)]}
.

Note that the activation energy is always non-zero and hence the increase of the relaxation
time τ remains finite. There is no real phase transition at finite temperature.

5.2. Spatial fluctuations

Up to now we have neglected spatial fluctuations originating from the static coupling strength
J . In the spirit of the mean-field approach we can include lowest-order gradient terms by using
the relation ∑

l(i)

JilD̂l =
∑
r(i)

Jir (D̂r − D̂i) + zJ D̂i ≈ J (∇2D̂i + zD̂i).

As the result, we get an evolution equation for the averaged density field n̄(x, t) in the form

∂t n̄ = n̄f (λ(1 − n̄) − βn̄) + 2J/T n̄f (λ(1 − n̄) + βn̄)∇2n̄. (16)

To study the influence of spatial fluctuations we make the ansatz n̄(x, t) = n̄(t) + m(x, t)

where n̄(t) satisfies equation (14). To lowest order, the function m(x, t) satisfies a diffusion-
like equation, but with a time-dependent diffusivity [29]. From this we can estimate the
perimeter L of the spin-down regions which are self-organized by the underlying restrictions.
In the long-time limit the result is

L2 � 2J

f T
ln(t/t0).

The perimeter is small in the initial time regime and increases on a logarithmic scale in the
long-time limit. Let us remark that we are not very deep inside the regime of high cooperativity;
there, we would expect a more pronounced increase related to the very strong decrease of the
mobility.
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5.3. Nucleation processes

As a consequence of the complex relaxational behaviour we have also studied the nucleation
process in an environment determined by the SFM[f, d]. When a glass former is cooled down,
the formation of droplets of the solid phase is prevented. So, we have modified the Lifshitz–
Slyozov–Wagner (LSW) theory [31,32] and have shown that the nucleation radius of droplets
remains finite at low temperatures. Using the low-temperature limit for the relaxation time,
equation (15), we get the averaged droplet radius

R̄ � κ−1/3

{
Ei

(
(2f − 1)h

2T 0

)
+

2T 0

(2f − 1)h
exp

[− (2f − 1)h/T 0
]}1/3

(17)

where Ei(x) is the exponential integral. In contrast to the conventional LSW case, the droplet
radius remains finite; droplets of finite size both appear and disappear. Nucleation is strongly
reduced, i.e. a sufficiently fast cooling procedure prevents crystallization.

6. Mode-coupling theory

6.1. Projection formalism

The general basis for an analytical study of long-time phenomena in arbitrary physical
systems via a mode-coupling approach is given by the Mori–Zwanzig projection operator
formalism [33]. Here we investigate the slow-relaxation regime of model classes where the
underlying microscopic dynamics is stochastic due to an irreversible master equation [34].
For that purpose we derive in a mathematically consistent way the evolution equations for
a complete set of relevant observables by using a projection formalism in the Fock space.
Therefore, these projection equations, which should represent the irreversible nature of the
underlying dynamics, form a general basis for analytical studies of the whole class of facilitated
kinetic Ising models. Here, we restrict our investigation to the analysis of the SFM[2, d]. This
means that, simultaneously with the general derivation of the projection equations, we will
specify all quantities in the form in which they apply to the SFM[2, d].

6.1.1. Relevant operators. The dynamics of an arbitrary physical system can be described
systematically by a reasonable set of relevant operators. It seems to be a suitable choice [33]
to use a system-specific relevant observable and its time derivatives up to a certain order as
a reasonable set of relevant operators, where the system-specific relevant observable itself is
determined by the zeroth time derivative. For the investigation of the SFM[2, d] and moreover
for several facilitated kinetic Ising models, the system-specific relevant observable or slow-
system variable is given by the normalized local deviations of the spin configuration from
the thermodynamic average. In principle, from the mathematical point of view the upper
borderline of all possible time derivatives β = 0, 1, . . . , gmax is usually a finite integer number
(gmax < ∞ ), but gmax → ∞ is also well defined, so

η̂
(0)
i (t) = η̂i (t) = D̂i(t) − n̄eq√

n̄eq(1 − n̄eq)
and η̂

(β)

i (t) = ∂βη̂i(t)

∂tβ
= η̂i (t)L̂

β . (18)

These covariant operators must be extended by adding the corresponding contravariant
operators in order to define a scalar product

(
η̂
(α)
i , η̃

(β)

i

) = 〈
η̂
(α)
i η̃

(β)

i

〉
, which corresponds to

an arbitrary correlation between a covariant and a contravariant operator. In the case of the
SFM[2, d] the contravariant operators are determined by

η̃
(0)
i (t) = η̂i (t) and η̃

(β)

i (t) = L̂β η̂i(t). (19)
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Using (18) and (19) we construct the backward projection operator P̂ :

· · · P̂ =
∑

α,β,i,j

〈 · · · η̃(α)
i

〉
g

αβ

ij η̂
(β)

j with
∑
α,i

〈
η̂
(γ )

k η̃
(α)
i

〉
g

αβ

ij = δγβδkj (20)

with α, β, . . . ∈ [0, gmax]. The projection operator leads to an identical mapping of the relevant
operators onto itself, i.e. η̂

(γ )

k P̂ = η̂
(γ )

k . The orthogonal projection operator Q̂ is given by
Q̂ = 1 − P̂ with η̂

(γ )

k Q̂ = 0. We remark that, as a consequence of the Fock-space approach,
all operators act to the left.

6.1.2. Basic equations. The evolution equation (5) leads to the formal solution |F(t)〉 =
exp{L̂t}|F(0)〉. The dependence of |F(t)〉 on time can be transferred to an arbitrary operator,
by analogy with the transformation of Schrödinger’s representation into the Heisenberg picture.
Therefore, time-dependent operators can by expressed by B̂(t) = B̂ exp{L̂t}. Accordingly,
the starting point for the derivation of the projection equations for the relevant observables,
in analogy with the derivation of the well-known Mori–Zwanzig equations [33, 35] for time-
reversible classical or quantum mechanical equations of motion, is given by the following time
evolution of η̂

(γ )

k (t) in the Fock space:

∂η̂
(γ )

k (t)

∂t
= η̂

(γ )

k (t)L̂. (21)

The application of the identity 1 = exp{−L̂t}(P̂ + Q̂) exp{L̂t} onto the operator L̂ from the
right-hand side leads to a formal splitting into a relevant and an irrelevant part. Note that P̂

realizes a projection onto the subspace L‖ of relevant operators, whereas Q̂ projects onto the
linearly independent subspace L⊥ of all other operators. Hence,

∂η̂
(γ )

k (t)

∂t
= −

∑
β,j

6
(γβ)

kj η̂
(β)

j (t) + η̂
(γ )

k L̂Q̂ exp{L̂t} (22)

with the frequency matrix

6
(γβ)

kj = −
∑
α,i

〈
η̂
(γ )

k L̂η̃
(α)
i

〉
g

αβ

ij . (23)

The second term of (22) can be rewritten by using an identical transformation of exp{L̂t} into
an integral expression:

exp{L̂t} =
∫ t

0
dt ′ exp{L̂Q̂(t − t ′)}L̂P̂ exp{L̂t ′} + exp{L̂Q̂t}. (24)

This relation allows the derivation of rigorous projection equations similar in structure to the
usual Mori–Zwanzig equations [33, 35]:

∂η̂
(γ )

k (t)

∂t
= −

∑
β,j

6
(γβ)

kj η̂
(β)

j (t) +
∫ t

0
dt ′
∑
β,j

K
(γβ)

kj (t − t ′)η̂(β)

j (t ′) + f̂
(γ )

k (t) (25)

with the residual forces

f̂
(γ )

k (t) = η̂
(γ )

k L̂Q̂ exp{L̂Q̂t} = f̂
(γ )

k exp{L̂Q̂t} (26)

which are characterized by the properties f̂
(γ )

k (t)Q̂ = f̂
(γ )

k (t) and f̂
(γ )

k (t)P̂ = 0, and the
memory matrix

K
(γβ)

kj (t − t ′) =
∑
α,i

〈
η̂
(γ )

k L̂Q̂ exp{L̂Q̂(t − t ′)}L̂η̃
(α)
i

〉
g

αβ

ij . (27)
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The comparison between the projection equations (25) and the standard Mori–Zwanzig
equations [33] shows a formal equivalence, because both types of equation contain frequency
terms, memory terms and residual forces with a similar mathematical structure. But there
is a fundamental difference which can be studied directly by inspecting the memory kernel.
On the one hand, the memory terms of the usual Mori–Zwanzig equations can be written
always as a correlation function of the residual forces. This relation can be interpreted as
a representation of the fluctuation-dissipation theorem, and it is causally connected with the
fact that the standard Mori–Zwanzig equations are related to reversible classical or quantum
mechanical equations. By way of contrast, it is easy to see that the memory terms (27) cannot
be completely constructed from the residual forces (26). The cause is the irreversible character
of the underlying master equation.

6.1.3. Projection equations for a reduced set of relevant observables. Now, we restrict
the set of relevant operators by setting gmax = 1. This is because the relevant observables
η̂
(0)
i (t) = η̂i (t) and η̂

(1)
i (t) = η̂i (t)L̂ represent a suitable set of relevant operators for

characterizing completely the long-time dynamics of the SFM[2, d]. This choice corresponds
to experience in mechanical systems, which are completely determined by spatial coordinates
and velocities. With this choice, the general system of projection equations (25) becomes

∂

∂t
η̂
(0)
k (t) =

∑
j

∑
β=0,1

[
− 6

(0β)

kj η̂
(β)

j (t) +
∫ t

0
dt ′ K(0β)

kj (t − t ′)η̂(β)

j (t ′)
]

+ f̂
(0)
k (t)

∂

∂t
η̂
(1)
k (t) =

∑
j

∑
β=0,1

[
− 6

(1β)

kj η̂
(β)

j (t) +
∫ t

0
dt ′ K(1β)

kj (t − t ′)η̂(β)

j (t ′)
]

+ f̂
(1)
k (t).

(28)

Note that gmax = 0 is used in [36–38], which leads to an apparent ergodic–non-ergodic
transition in disagreement with numerical predictions. On using the relations 6

(0β)

kj = −δkj δ
1β ,

f̂
(0)
k (t) = 0 and K

(0β)

kj (t − t ′) = 0, the first equation of (28) is reduced to the identity

∂t η̂
(0)
k (t) = ∂t η̂k(t) = η̂

(1)
k (t) and thus the second equation can be rewritten as

∂2η̂k(t)

∂t2
= −

∑
j

[
6

(10)
kj η̂j (t) + 6

(11)
kj

∂η̂j (t)

∂t

]

+
∑
j

∫ t

0
dt ′

[
K

(10)
kj (t − t ′)η̂j (t) + K

(11)
kj (t − t ′)

∂η̂j (t
′)

∂t ′

]
+ f̂

(1)
k (t). (29)

The result is a second-order differential equation which reflects the complete dynamics of the
relevant observables.

6.1.4. Projection equations for correlation functions. An important role for investigations of
slow-relaxation phenomena is played by the time-dependent equilibrium correlation functions
of the relevant observables, which are in general defined by +kl(t) = 〈η̂k(t)η̃l(0)〉. For
facilitated kinetic Ising models like the SFM[2, d], the structure of these correlation functions
can be characterized by

+kl(t) = 〈η̂k(t)η̂l(0)〉 = 〈s| η̂k exp{L̂t}η̂l|F(0)〉. (30)

Therefore, these correlation functions are equivalent to the normalized spin–spin correlation

+kl(t) = 〈σk(t)σl(0)〉 − n̄2
eq

n̄eq(1 − n̄eq)
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which should be similar to the normalized density–density correlation of the underlying
supercooled liquid, i.e. +kl(t) ∼ 〈δρ(r, t) δρ(r′, 0)〉. The evolution equation of +kl(t) follows
from (29) by a right-hand multiplication with η̂l and a subsequent determination of the average.
The contributions of the residual forces f̂ (1)

n (t) vanish identically. As a result, one obtains an
exact second-order integro-differential equation [34]

∂2+kl

∂t2
= −

∑
j

[
6

(10)
kj +jl + 6

(11)
kj

∂+jl

∂t

]

+
∫ t

0
dt ′

[
K

(10)
kj (t − t ′)+jl(t

′) + K
(11)
kj (t − t ′)

∂+jl(t
′)

∂t

]
. (31)

As usual it is more convenient to transform the evolution equation (31) via a Fourier transform
over space and time into an algebraic equation. In the present paper all further calculations are
based on a hypercubic lattice structure with N sites, but application to another lattice type is
always possible. In the following we assume that the correlation functions, frequency matrices,
memory matrices are spatially homogeneous and isotropic, e.g. +nm(t) = +(|n−m|, t). The
underlying lattice structure becomes irrelevant on sufficiently large spatial scales compared
with the lattice constant and this can be mathematically expressed by the continuum limit, which
corresponds to |n − m| → ∞ or small wave-vectors q in the Fourier space. In this sense it
is sufficient to perform all further analytical calculations within a continuum approximation.
Finally, the Laplace transformation with respect to the time leads to the fundamental algebraic
equation

+(q, p) = +0(q)

p +
N6(10)(q) − NK(10)(q, p) − pg0(q)

p + N6(11)(q) − NK(11)(q, p) + g0(q)

(32)

with the initial conditions +(q, 0) = +0(q) and +̇(q, 0) = +̇0(q) as well as the abbreviation
g0(q) = +̇0(q)/+0(q). In principle, the projection equations (32) are valid for any arbitrary
physical system which can be described by irreversible master equations. Hence, the way to
construct a mode-coupling approach, based on the projection equations, for facilitated kinetic
Ising models is quite straightforward—by calculating explicitly the frequency matrices and
memory matrices for the thermodynamic equilibrium. Here, it should be remarked that the
following analytical calculations of the SFM[2, d] show that6(11)(q) �= 0 andK(10)(q, p) �= 0,
which is a consequence of the irreversible nature of the master equations. By way of contrast,
the usual Mori–Zwanzig equations [33] are founded on reversible Liouville operators, leading
immediately to 6(11)(q) = 0 and K(10)(q, p) = 0.

6.2. Determination of the memory matrices

6.2.1. Complete and orthogonal basis. In principle, under the assumption of a vanishing
interaction between spins related to the Hamiltonian H = ∑

i εσi , all operators acting on the
Fock space can be represented by a complete set of orthogonal base operators. For facilitated
kinetic Ising spin models the determination of such an operator-space basis is possible, by
considering the underlying d̂i , d̂

†
i -(pseudo-fermionic) algebra (6). Now the base operators

can be expressed as all possible products of the operators η̂i introduced above (18). A base
operator is denoted as B̂

(n)
Nn

. The index n corresponds to the order of the product; Nn is an
n-dimensional vector indicating the lattice sites concerned. Hence, the structure of the basis
is given by
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B̂(0) = 1

B̂
(1)
i = η̂i

B̂
(2)
ij = η̂i η̂j for i < j

B̂
(3)
ijk = η̂i η̂j η̂k for i < j < k

...

Note that because of the commutation relation [η̂i , η̂j ] = 0, the components of Nn can
be ordered. The case of two or more equivalent indices is excluded because η̂2

i = (1 −
2n̄eq)/[n̄eq(1 − n̄eq)]1/2η̂i + 1, i.e. quadratic or higher powers of each operator η̂i can always
be reduced to a linear representation. The base operators are orthogonal to each other, which
means that 〈

B̂
(n)
Nn

B̂
(m)
Nm

〉 = δnmδNn,Nm
. (33)

This relation is based on the fact that each equilibrium average of operators on various
lattice sites decomposes into a product of averages with respect to these sites, e.g.
〈η̂2

i · · · η̂j · · · η̂2
k · · ·〉 = 〈η̂2

i 〉 · · · 〈η̂j 〉 · · · 〈η̂2
k〉 · · · . In general, this important relation is valid

for all facilitated kinetic Ising spin models if the neighbour–neighbour interaction vanishes.
Consequently, the orthogonality relation (33) follows immediately because of the fundamental
features 〈η̂i〉 = 0 and 〈η̂2

i 〉 = 1. Thus, the basis B̃ = {B̂(n)
Nn

} is orthogonal.

The completeness of B̃ = {B̂(n)
Nn

} is to be understood in relation to the reference state 〈s|,
i.e. the following equation is fulfilled for an arbitrary operator X̂:

〈s| X̂ =
∑
n

∑
Nn

〈
X̂B̂

(n)
Nn

〉 〈s| B̂(n)
Nn

. (34)

The mathematical proof of this property is given in [34].

6.2.2. Decomposition of the memory terms. Now, on the basis of the complete and orthogonal
basis {B̂(n)

Nn
} we are able to decompose the memory matrix (27) which can be written as

K
(γβ)

kj (t) =
∑
α,i

〈
η̂kL̂

γ +1Q̂ exp{Q̂L̂Q̂t}Q̂L̂α+1η̂i

〉
g

αβ

ij (35)

for the SFM[2, d] by using the relations (18) and (19) (note that Q̂2 = Q̂). As is known
from quantum mechanics, it is possible to rewrite (35) by inserting the completeness relation
1̂ = ∑

n

∑
Nn

|B̂(n)
Nn

〉〈
B̂

(n)
Nn

|, which leads to

K
(γβ)

kj (t) =
∑
α,i

∑
n,m

∑
Nn,Nm

H
γ (n)

k,Nn

〈
B̂

(n)
Nn

exp{Q̂L̂Q̂t}B̂(m)
Nm

〉
H̃

(m)α
Nm,i g

αβ

ij (36)

with the coefficients

H
γ(n)

k,Nn
= 〈

η̂kL̂
γ +1Q̂B̂

(n)
Nn

〉
and H̃

(m)α
Nm,i = 〈

B̂
(m)
Nm

Q̂L̂α+1η̂i

〉
. (37)

These coefficients can be determined exactly for the SFM[2, d] by simple algebraic
calculations. If one writes down explicitly the form of the coefficients (37), it is easy to
see that H

γ(n)

k,Nn
= H̃

(m)α
Nm,i = 0 for n = 0, 1. Moreover, due to the choice of the relevant

observables (γ = 0, 1) the coefficients (37) also vanish identically for the base operators with
n > 5. Hence, non-vanishing contributions to the memory matrix (36) are determined by a
finite number of base operators, where the leading term is given by n = 2. By inserting the
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unit operator 1̂ = exp{−L̂t} exp{L̂t} and the completeness relation into the memory kernel〈
B̂

(n)
Nn

exp{Q̂L̂Q̂t}B̂(m)
Nm

〉
. One obtains〈

B̂
(n)
Nn

exp{Q̂L̂Q̂t}B̂(m)
Nm

〉 = ∑
p

∑
Np

〈
B̂

(n)
Nn

exp{Q̂L̂Q̂t} exp{−L̂t}B̂(p)

Np

〉〈
B̂

(p)

Np
(t)B̂

(m)
Nm

〉
(38)

where the averages
〈
B̂

(p)

Np
(t)B̂

(m)
Nm

〉
are usual many-point correlation functions, e.g.〈

η̂i (t)η̂j (t)η̂kη̂l

〉
for p = m = 2.

6.2.3. Mode-coupling approximation. An exact determination of the memory kernel (38) is
not possible at long times. Therefore, we need a suitable approximation [39] to make progress.
The exact decomposition of the memory kernel in (38) can be interpreted as a separation of
fast and slow timescales. By physical intuition, in the long-time limit the approximation
strategy for the memory kernel will consist in the elimination of the fast modes as a suitable
approximation of the correlation function.

First we analyse the function =
(np)

NnNp
(t) = 〈

B̂
(n)
Nn

exp{Q̂L̂Q̂t} exp{−L̂t}B̂(p)

Np

〉
of the

kernel (38). In general, B̂
(n)
Nn

exp{Q̂L̂Q̂t} can be expected to show a significant evolution

on a very short timescale in comparison to the characteristic timescale related to B̂
(n)
Nn

exp{L̂t}.
Note that, while the evolution operator L̂ contains all relevant timescales, the operator Q̂L̂Q̂

is mainly determined by contributions related to short timescales [33]. Consequently, it can
be assumed that at long times the time dependence of =

(np)

NnNp
(t) is weak in comparison to the

decay of the correlation function
〈
B̂

(p)

Np
(t)B̂

(m)
Nm

〉
, which is related only to the time evolution

factor exp{L̂t}. Hence, at long times we can expand =
(np)

NnNp
(t) in powers of time t via a Taylor

expansion

=
(np)

NnNp
(t) =

∞∑
M=0

>
(np),M

NnNp

tM

M!

with

>
(np),M

NnNp
=
〈
B̂

(n)
Nn

∂M

∂tM

[
exp{Q̂L̂Q̂t} exp{−L̂t}]

t=0B̂
(p)

Np

〉
.

The first coefficient >(np),M

NnNp
can be determined by simple calculations

>
(np),0
NnNp

= 〈
B̂

(n)
Nn

B̂
(p)

Np

〉 = δnpδNn,Np
.

So far, we have restricted our investigation to the simplest case, i.e. we assume >
(np),M

NnNp
= 0

for M � 1. It should be remarked that an extension to higher-order terms is possible
without any problems. We omit consideration of higher-order terms only for clarity of the
calculations. Furthermore, the results obtained already show a reasonable agreement with
numerical simulations.

Clearly, the main problem consists in a reasonable approximation of the many-point
correlation function

〈
B̂

(p)

Np
(t)B̂

(m)
Nm

〉
. This function decays in products of simple pair correlation

functions if the distances between the corresponding lattice points (defined by the vectors Np

and Nm) are sufficiently large:〈
B̂

(p)

i1i2...ip
(t)B̂

(m)
j1j2...jp

〉 � 1

p!
(+i1j1(t)+i2j2(t) · · ·+ipjp (t) + permutations). (39)

This asymptotic limit is correct for infinitely large (or at least sufficiently large) distances
between the lattice sites i1, i2, . . . . We use this limit case as an approximation for an arbitrary
set of lattice sites {Np,Nm}. This approximation is equivalent to the decomposition of higher
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static correlation functions into simple pair correlation functions. A similar approach has been
used, for example, to create self-consistent equations for the static structure factor [40].

As mentioned above, the base operators with 2 � n � 5 lead only to non-vanishing
coefficients (37) and thus to non-zero terms for the memory matrix (36). The leading term or
the main contribution is given by n = 2, related to the base operator B̂

(2)
ij = η̂i η̂j . The base

operators B̂
(n)
Nn

with 3 � n � 5, on the other hand, yield only small additional contributions,

which can be neglected. In view of this, we now restrict the basis B̃ = {B̂(n)
Nn

} to operator
elements with n � 2. Thus, the memory matrix (36) can be approximated by

K
(γβ)

kj (t) ≈ 1

2

∑
α,i

∑
i1i2j1j2

H
γ(2)
k,i1i2

[
+i1j1(t)+i2j2(t) + +i1j2(t)+i2j1(t)

]
H̃

(2)α
j1j2,i

g
αβ

ij (40)

at long times.
According to the classification scheme of Hohenberg and Halperin [41], the SFM[2, d]

is a so-called model A and therefore the frequency and memory matrices do not vanish for
q → 0. In this sense, it is a suitable simplification to restrict the long-time analysis for the non-
conserved irreversible dynamics of the SFM[2, d] to the limit q → 0. Then the suppression of
the wave-vector dependence leads to +nm(t) = ϕ(t)δnm = (1/N)

∑
q ϕ(t) exp{iq(n − m)}.

On using the relation g0(q) = g0(0) = −@1
0/τ0 with @1

0 = 2z(z−1)[n̄eq(1−n̄eq)]1/2 (see [34]),
the algebraic evolution equation (32) can be written as

ϕ(p) =
[
p +

@1
0

τ0
− 1

τ0

@1
0N6(11)(0)τ0 − N6(10)(0)τ 2

0 − (@1
0)

2

pτ0 + N6(11)(0)τ0 − λA(p) − @1
0

]−1

(41)

with the initial condition ϕ(0) = 1 and the Laplace transform

A(p) =
∫ ∞

0
(dt/τ0) ϕ2(t) exp{−pt} Im z > 0.

6.3. Ergodicity and non-exponential decay

Now, using the algebraic mode-coupling equation (41) we are able to analyse the characteristic
slowing down of the dynamics of the SFM[2, d] for decreasing temperature. Following the
philosophy of the investigations of mode-coupling theories [36, 38, 42], the first question that
arises concerns the existence of ergodicity and non-ergodicity: is there a critical temperature
T 0 such that the correlation functionϕ(t) shows an incomplete decayϕ(t → ∞) = f∞ �= 0 for
T � T 0? Equivalently, does the function ϕ(p) have a pole at p = 0 for T � T 0? This question
is analogous to that of the determination of a kinetic phase transition from an ergodic state into
a non-ergodic state for supercooled liquids. To answer it, we split the correlation function into
a non-ergodic part f∞ and a contribution ϕerg(t) via the ansatz ϕ(t) = f∞ + ϕerg(t). Thus, the
function ϕerg(t) describes the remaining ergodic part of the SFM[2, d], i.e. ϕerg(t → ∞) = 0.
The Laplace transformation leads to

ϕ(p) = f∞
p

+ ϕerg(p) (42)

with limp→0 pϕerg(p) = 0. Furthermore, the term A(p) can expressed as

A(p) = f 2
∞

pτ0
+ Aerg(p) (43)

with limp→0 pAerg(p) = 0. Using the ansatz (42) and (43), the evolution equation (41) can
be written as

f∞ = lim
p→0

pϕ(p) = lim
p→0

[
1 +

@1
0

pτ0
+

@1
0N6(11)(0)τ0 − N6(10)(0)τ 2

0 − (@1
0)

2

λf 2∞

]−1

. (44)
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One sees immediately that the non-ergodicity part f∞ has a non-vanishing value only if @1
0 = 0.

Otherwise, the only solution of (44) is given by f∞ = 0, i.e. the SFM[2, d] is an ergodic system
if @1

0 �= 0. Clearly, the value of @1
0 vanishes [34] only for T = 0:

@1
0 = 0 ⇐⇒ T = 0.

Thus, the analytical calculations based on a mode-coupling approach exhibit a non-ergodic
state of the SFM[2, d] only at zero temperature. Additionally, we obtain that the frequency
term 6(10)(0) vanishes for T = 0. Hence, the non-ergodic part is given by

f∞ = 1

i.e. an initial equilibrium configuration at T = 0 shows no structural relaxations throughout
the total observation time. Consequently, in the language of ergodic–non-ergodic transitions
the SFM[2, d] realizes a kinetic phase transition from an ergodic state to a non-ergodic state
at the critical temperature T 0 = 0. In other words, each arbitrary equilibrium configuration is
frozen at T = T 0 = 0.

The present analytical calculation exhibits the important result that the SFM[2, d] is
ergodic for all finite temperatures T > 0, which is in complete agreement with previous
numerical results [6–8, 43]. As expected, a mode-coupling approach seems to be the right
formalism for the investigation of slow-relaxation dynamics of the SFM[2, d], in contrast to
a renormalized perturbation theory [2,3] which predicted an incorrect kinetic phase transition
at a finite critical temperature.

In the next step, we analyse the slow-relaxation behaviour near the critical temperature
T 0, i.e. at finite temperatures T > 0. To this end, we introduce the relaxation time τc = ϕ(0).
On the basis of equation (41), τc is given by

τc = τ0
N6(11)(0)τ0 − λA(0) − @1

0

N6(10)(0)τ 2
0 − λ@1

0A(0)
. (45)

Using this notation, the algebraic equation (41) can be written as

ϕ(p) =
[
p + τ−1

c +

(
@1

0

τ0
− τ−1

c

)[
1 +

ς

pτ0 + λ [A(0) − A(p)]

]−1
]−1

(46)

with the coefficient

ς = N6(11)(0)τ0 − λA(0) − @1
0 . (47)

Therefore, equations (45)–(47) are a closed, non-linear system of equations, which can be
solved by standard numerical methods. We obtain that the correlation function ϕ(t) shows with
decreasing temperature a pronounced stretched decay over some decades, while an exponential-
like decay is obtained for high temperatures [34]. This stretching can be illustrated by a simple
argument. Short times (t → 0 or p → ∞) are related to a behaviour ϕ(p) � (p + @1

0/τ0)
−1

or ϕ(t) � exp{−@1
0 t/τ0}. On the other hand, the long-time regime (t → ∞ or p → 0)

is characterized by ϕ(p) � (p + τ−1
c )−1 or ϕ(t) � exp{−t/τc}. Because @1

0/τ0 � τ−1
c ,

we expect a typical crossover between the two regimes characterized by a stretched decay.
Therefore, the present analysis of SFM[2, d] shows a typical stretched-exponential decay of
the autocorrelation function ϕ(t) for temperature decreasing towards T 0, which depends in a
natural way on T .

7. Conclusions

In the present paper we have introduced various theoretical and numerical approaches to the
slow relaxation and cooperative rearrangements in the SFM[f, d]. We have demonstrated that
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spin-facilitated kinetic Ising models show the essential characteristics of supercooled liquids.
From this point of view, and from the fact that the spin-lattice structure allows the application
of various theoretical techniques, the SFM[f, d] is an outstanding candidate for the description
of cooperative processes.
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